In Vivo Assessment of NS1-Truncated Influenza Virus with a Novel SLSYSINWRH Motif as a Self-Adjuvanting Live Attenuated Vaccine
نویسندگان
چکیده
Mutants of influenza virus that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) characteristically induce high interferon responses. The dual activity of interferon in blocking virus replication and enhancing the development of adaptive immune responses makes these mutants promising as self-adjuvanting live-attenuated influenza vaccine (LAIV) candidates. Yet, among the NS1-truncated mutants, the length of NS1 is not directly correlated with the interferon-inducing efficiency, the level of attenuation, or effectiveness as LAIV. Using quantitative in vitro biologically active particle subpopulation analysis as a tool to identify potential LAIV candidates from a pool of NS1-truncated mutants, we previously predicted that a NS1-truncated mutant pc2, which was less effective as a LAIV in chickens, would be sufficiently effective as a LAIV in mammalian hosts. In this study, we confirmed that pc2 protected mice and pigs against heterologous virus challenge in terms of preventing clinical signs and reducing virus shedding. pc2 expresses a unique SLSYSINWRH motif at the C-terminus of its truncated NS1. Deletion of the SLSYSINWRH motif led to ~821-fold reduction in the peak yield of type I interferon induced in murine cells. Furthermore, replacement of the SLSYSINWRH motif with the wildtype MVKMDQAIMD sequence did not restore the interferon-inducing efficiency. The diminished interferon induction capacity in the absence of the SLSYSINWRH motif was similar to that observed in other mutants which are less effective LAIV candidates. Remarkably, pc2 induced 16-fold or more interferon in human lung and monkey kidney cells compared to the temperature-sensitive, cold-adapted Ann Arbor virus that is currently used as a master backbone for LAIVs such as FluMist. Although the mechanism by which the SLSYSINWRH motif regulates the vaccine properties of pc2 has not been elucidated, this motif has potential use in engineering self-adjuvanting NS1-truncated-based LAIVs.
منابع مشابه
Association between Interferon Response and Protective Efficacy of NS1-Truncated Mutants as Influenza Vaccine Candidates in Chickens
Influenza virus mutants that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) are attractive candidates for avian live attenuated influenza vaccine (LAIV) development because they are both attenuated and immunogenic in chickens. We previously showed that a high protective efficacy of NS1-truncated LAIV in chickens corresponds with induction of high levels of type I interferon ...
متن کاملInfluenza B virus NS1-truncated mutants: live-attenuated vaccine approach.
Type B influenza viruses can cause substantial morbidity and mortality in the population, and vaccination remains by far the best means of protection against infections with these viruses. Here, we report the construction of mutant influenza B viruses for potential use as improved live-virus vaccine candidates. Employing reverse genetics, we altered the NS1 gene, which encodes a type I interfer...
متن کاملEffect on virulence and pathogenicity of H5N1 influenza A virus through truncations of NS1 eIF4GI binding domain.
To study the effect of NS1 eIF4GI binding domain on virulence and pathogenicity of H5N1 influenza A virus, 5 recombinant H5N1 viruses encoding eIF4GI binding domain-truncated NS1 proteins and parental NS1 (NS1‐wt) were generated by an 8‐plasmid-based reverse genetics system. The results indicated that the recombinants with the addition of 5‐amino acid and the deletion position of 85-89 in NS1‐w...
متن کاملAttenuation of equine influenza viruses through truncations of the NS1 protein.
Equine influenza is a common disease of the horse, causing significant morbidity worldwide. Here we describe the establishment of a plasmid-based reverse genetics system for equine influenza virus. Utilizing this system, we generated three mutant viruses encoding carboxy-terminally truncated NS1 proteins. We have previously shown that a recombinant human influenza virus lacking the NS1 gene (de...
متن کاملMutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs.
It has been shown previously that the nonstructural protein NS1 of influenza virus is an alpha/beta interferon (IFN-alpha/beta) antagonist, both in vitro and in experimental animal model systems. However, evidence of this function in a natural host has not yet been obtained. Here we investigated the role of the NS1 protein in the virulence of a swine influenza virus (SIV) isolate in pigs by usi...
متن کامل